- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Beeson, Jeffrey (1)
-
Brown, Erik T. (1)
-
Caballero, Margarita (1)
-
Cabral Cano, Enrique (1)
-
Eckert, Andreas (1)
-
Fawcett, Peter J. (1)
-
Gibson, Derek (1)
-
Kenney, William F (1)
-
Lozano-García, Socorro (1)
-
Maurer, Jeremy (1)
-
McEnaney, Trenton (1)
-
Myrbo, Amy E. (1)
-
Noren, Anders J. (1)
-
O'Grady, Ryan (1)
-
Obrist-Farner, Jonathan (1)
-
Ortega, Beatriz (1)
-
Pérez, Liseth (1)
-
Reyes, Fatima (1)
-
Schnurrenberger, Douglas (1)
-
Schwalb, Antje (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract On 4 February 1976, a Mw 7.5 earthquake along the Motagua fault, Guatemala, ruptured ~230 km of the North American and Caribbean plate boundary. Today, the plate boundary remains poorly monitored, and the 1976 earthquake is still not fully understood. Here, we present seismic reflection profiles and radiometrically dated sediment core data from six lakes around the Motagua fault, together with reports of destruction and a quasi-dynamic rupture model, which show that the 1976 earthquake experienced strong directivity that impacted the distribution of shaking. The earthquake left behind a detailed record of event deposits (EDs) in five of the six study lakes. Thicker EDs are present in Lake Atitlán, near the terminus of the earthquake rupture, whereas thinner EDs were found in lakes off-axis of the rupture direction. We argue that EDs can be utilized to constrain asymmetrical distribution of shaking during earthquakes and that paleoseismic studies should consider directivity as a factor controlling the thickness of EDs.more » « lessFree, publicly-accessible full text available September 10, 2026
-
Brown, Erik T.; Caballero, Margarita; Cabral Cano, Enrique; Fawcett, Peter J.; Lozano-García, Socorro; Ortega, Beatriz; Pérez, Liseth; Schwalb, Antje; Smith, Victoria; Steinman, Byron A.; et al (, Scientific Drilling)Abstract. The primary scientific objective of MexiDrill, the Basin of MexicoDrilling Program, is development of a continuous, high-resolution∼400 kyr lacustrine record of tropical North Americanenvironmental change. The field location, in the densely populated,water-stressed Mexico City region gives this record particular societalrelevance. A detailed paleoclimate reconstruction from central Mexico willenhance our understanding of long-term natural climate variability in theNorth American tropics and its relationship with changes at higher latitudes.The site lies at the northern margin of the Intertropical Convergence Zone(ITCZ), where modern precipitation amounts are influenced by sea surfacetemperatures in the Pacific and Atlantic basins. During the Last GlacialMaximum (LGM), more winter precipitation at the site is hypothesized to have beena consequence of a southward displacement of the mid-latitude westerlies. Itthus represents a key spatial node for understanding large-scalehydrological variability of tropical and subtropical North America and isat an altitude (2240 m a.s.l.), typical of much of western North America. In addition, its sediments contain a rich record of pre-Holocene volcanichistory; knowledge of the magnitude and frequency relationships of thearea's explosive volcanic eruptions will improve capacity for riskassessment of future activity. Explosive eruption deposits will also be usedto provide the backbone of a robust chronology necessary for fullexploitation of the paleoclimate record. Here we report initial resultsfrom, and outreach activities of, the 2016 coring campaign.more » « less
An official website of the United States government
